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Abstract

Estimates of particle-size made by operators in the field and laboratory represent a vast and relatively untapped data archive. The wide spatial distribution of

particle-size estimates makes them ideal for constructing geological models and soil maps. This study uses a large data set from the Netherlands (n = 4837)

containing both operator estimates of particle-size and complete particle-size distributions measured by laser granulometry. Operator estimates are inaccurate

and imprecise relative to measured laser data; only 16.68% of samples were successfully classified using the Dutch classification scheme for fine sediment.

Operator estimates of sediment particle-size encompass the same range of percentage values as particle-size distributions measured by laser analysis. However,

the distributionsmeasured by laser analysis show that most of the sand percentage values lie between 0 and 1, so themajority of the variability in the data is lost

because operator estimates are made to the nearest 1% at best, and more frequently to the nearest 5%. Operator estimates made by three technicians trained by

the Geological Survey of the Netherlands are found not to be influenced by bias, rather they exhibit very similar levels of accuracy and precision. This study

compares five different methods of modelling complete particle-size distributions from sparse data: (i) a four-part Pearson’s probability distribution function,

(i) a log-linear interpolation, (iii) a logit-linear interpolation, (iv) a logistic probability distribution function and (v) a logit constrained cubic-spline (logit-CCS)

interpolation. The logit-CCS interpolation performed best across all the samples used, although the performance of all models was very similar for normal

Gaussian, skewed and peaked distributions. Predictions for bimodal distributions using the Pearson’s, logit-linear and logistic models are markedly less

accurate than both log-linear and logit-CCS interpolation models. Although the logit-CCS interpolation model produces the best predictions of continuous parti-

cle-size distributions, the low accuracy and precision of operator estimates does not warrant the use of such a complex algorithm. Given this, it is suggested that

a standard log-linear interpolation is the most effective means of modelling complete particle-size distributions from sparse data. Interpolation-based models are

recommended over probability distribution functions because they allow for a greater degree of flexibility and will always honour the available input data.
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Introduction

Rationale

Estimates of sediment particle-size made in the field or labora-

tory by trained operators comprise the largest proportion of

modern and archive lithological datasets. The estimation

method relies on comparing known standards with field samples,

both by visual inspection and by rubbing the sediment between

thumb and fingers. Experienced operators are able to identify

the relative proportions of gravel, sand, silt, clay and organic

material in a sample (Fig. 1), as well as placing it in a soil classi-

fication category. Despite the clear potential for bias and inac-

curacy, three-dimensional geological models and soil maps rely

heavily on estimates of particle-size made from borehole cuttings,

cores and exposures. The main reasons for this are (i) it is much less

expensive to make estimates of sediment particle-size than to

measure it in the laboratory, (ii) the high local variability of

sediment particle-size means that it is better to spend time

collecting a high number of low-quality samples rather than

a low number of high-quality samples (Hengl et al., 2007), (iii)

operator estimates are the only practical way to acquire textural
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data for coarse sediments >50 mm in diameter (Church et al.,

1987) without incurring the need to analyse very large samples

(>100 kg), and (iv) sediment particle-size may be of relatively

minor importance to subsurface exploration projects compared

to the collection of geotechnical data.

Recent developments in geological modelling have made it

possible to draw maps and build geological models of sediment

particle-size using complete particle-size distributions, rather

than separate textural categories (Walvoort & De Gruijter,

2001; Odeh et al., 2003; Roberson & Weltje, 2011; Lark et al.,

2012). This approach offers a number of advantages over indi-

cator kriging or sequential Gaussian simulation methods:

(i) the quality of the data can be easily assessed, (ii) conversion

from interpolated binary indicators (i.e. the presence or

absence of different grain size categories) into particle-size

distributions is avoided and (iii) the mathematical representa-

tion of sedimentary processes is simplified. In order to retain

the advantages of using high-quality data alongside operator

estimates of sediment particle-size when building a geological

model it is necessary to both (i) model complete particle-size

distributions from limited textural data and (ii) assess the error

in operator estimates.

Existing modelling approaches

The huge potential for using operator estimates of sediment

particle-size to model complete particle-size distributions

has been widely recognised within the fields of soil science

(Shirazi et al., 1988; Kozak et al., 1996; Skaggs et al.,

2001), civil engineering (Fredlund et al., 2000; Fredlund &

Houston, 2009) and mathematics (Dexter & Tanner, 1972;

Barndorff-Nielsen, 1978; Fieller et al., 1992; Taguas et al., 2000).

The majority of these studies have focused on summarising

particle-size distributions using parametric function coefficients

(e.g. mean, standard deviation, skewness), which provide conve-

nient variables for spatial modelling (Meilianda et al., 2011).

However, the errors involved in calculating distribution moments

from limited textural data are often large for broad, skewed,

peaked or multimodal distributions (Folk, 1966; Schlee & Webster,

1967; Weltje & Roberson, 2012). Furthermore, because moment

methods are explicitly linked to one another, it is not possible to

construct independent spatial models without running into

serious mathematical difficulties. For these reasons the appli-

cation of moment methods to modelling particle-size distribu-

tions is not recommended.

As an alternative to fitting distribution functions, several

attempts have been made to model particle-size distributions

using customised parametric functions (Hwang et al., 2002;

Silva et al., 2004; Wu & Jet-Chau Chang, 2009). For example,

Skaggs et al. (2001) used a modified logistic function to predict

distributions from three operator estimates: the clay mass frac-

tion, the silt mass fraction and the very fine to fine sand mass

fraction. A similar method was implemented by Gruijters et al.

(2005), who used a combination of three arctan functions to

define a cumulative frequency distribution from operator esti-

mates of the silt fraction, the median particle-size of the sand

fraction, the sand fraction and the gravel fraction. These types

of predictive models rely on fine-tuning function coefficients to

derive best-fit predictions for any given set of samples. Calculating

optimal parameters usually involves one or more stochastic model-

ling steps and is therefore time-consuming.

The application of both standard and customised parametric

distribution functions to large heterogeneous data sets is limited.

Irrespective of how complex these functions are, they remain

unable to successfully describe the full range of all particle-size

distributions encountered in natural sediments, even when using

a large number of discrete particle-size classes. In worst-case

scenarios the model may not even honour the input data.

Interpolation of percentage-frequency values offers modelling

flexibility, allowing all available data to inform the model without

the need to produce a customised model for each data set.

Interpolation functions also offer the considerable advantage

over fitted distribution functions that all the input data will

be honoured. In the past, interpolation methods used for

particle-size distributions have suffered from a trade-off between

over-simplification and the tendency to violate constant-sum

and conservation of mass constraints (e.g. polynomial func-

tions). A recent methodological study by Weltje & Roberson

(2012) demonstrated that such issues could be overcome by

transforming percentage-frequency data into the logit domain

prior to the application of a constrained cubic-spline (CCS)

Fig. 1. Construction of a continuous cumulative frequency distribution

(blue line) from operator estimates of sediment particle-size given as black

crosses. The relative proportions of gravel, sand, silt and clay (Cf0 to Cf4) are cal-

culated following Eq. 2. The cumulative percentage frequency for the distribution

median (CfD50), the median of the gravel fraction (Cfgm) and the median of the

sand fraction (Cfzm) are calculated following Eq. 3.
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algorithm. The model also uses an adaptive non-linear extrapola-

tion algorithm to predict smoothly tapering distribution tails.

The results presented by Weltje & Roberson (2012, their Figure 5)

demonstrate that particle-size distributions measured by laser

analysis could be modelled reliably using just four equiprobable

particle-size categories.

Scope of this paper

The aims of this paper are to (i) quantify the accuracy and precision

of operator estimates of particle-size, (ii) determine if operator bias

is a significant factor, (iii) compare a range of different methods for

modelling complete particle-size distributions from a small number

of particle-size categories and (iv) demonstrate the application of

the best method to modelling complete particle-size distributions

from operator estimates of particle-size.

Methods

The data

This study uses an archive of high-quality sediment samples

collected and maintained by the Geological Survey of the

Netherlands. The Top Integraal database is a benchmark data

set that contains lithological, hydraulic, geochemical and

geotechnical measurements of the main lithofacies types in

the Netherlands. The project aims to gather representative

samples of the 27 geologically homologous areas identified

by Vernes et al. (2010), with the overall objective of building

a high-resolution geological model of the top 30–50 m of

the Dutch subsurface. The 4885 particle-size distributions

used by this project from the database are representative of

aeolian, estuarine, fluvial, glacial, marine and lagoonal depositional

environments found in the Netherlands.

The lithology of each sample was measured by passing the

bulk sediment sample though a 2 mm sieve prior to laser

diffraction. Laser diffraction was performed using a Fritsch

Analysette 22 XL particle analyser (Fritsch GmbH, Idar-Oberstein,

Germany). The particle-size distribution is described by 32 size

categories ranging from 2000 to 0.1 μm.
In addition to laboratory analysis, each sample was also described

by a trained laboratory technician according to the Dutch standard

for sediment analysis (NEN5104 (Bosch, 2000, p. 38)). Operator

estimates of the relative proportions of gravel, sand, silt, clay, shell

material and organic matter were made, as well as estimates of

the median particle-size of the sand fraction (one of six qualitative

classes) and the gravel fraction (one of three qualitative classes).

Accuracy and precision of operator estimates

Operator estimates of sediment particle-size were made for

four particles-size categories: gravel, sand, silt and clay.

These correspond respectively with the following maximum

particle-size boundaries: 63 mm, 2 mm, 63 μm and 2 μm. Error

in operator estimates was calculated by comparing the logratio

operator estimates of the relative proportions of gravel, sand,

silt and clay with the logratio of those measured by laser analysis.

The logratio function transforms percentile data into uncon-

strained real space, allowing mathematically robust analyses to

be performed (Aitchison, 2003). The logratio transformation is

an invaluable tool for the analysis of percentage frequency data,

which otherwise are heavily biased because they exist in closed

space, i.e. all data range between 0 and 100%. The logratio trans-

form of particle-size distribution p is given as:

a ¼ clr pð Þ ¼ log
pi

g pð Þ
� �

. . . log
pD
g pð Þ

� �� �
ð1Þ

where a is the logratio transform of p, a D-part particle-size

distribution, i is the i th category and g(p) is the geometric

mean of particle-size distribution p. Each operator estimate

considered here is a four-part particle-size distribution.

Accuracy is defined here as the median error (~e) and precision as

the standard deviation of the error (s).

Operator bias

Operator estimates of the relative proportions of gravel, sand,

silt and clay were made by three laboratory technicians each

trained at the Geological Survey of the Netherlands. This study

attempts to identify whether the operator estimates made were

consistent between operators or if the estimates varied system-

atically with each operator. The existence of operator bias was

assessed using a Wilcoxon rank-sum test to compare operator

sub-populations of accuracy and precision scores. The Wilcoxon

rank-sum test is a non-parametric test suitable for comparing

different sized populations with non-Gaussian distributions.

Modelling particle-size distributions

The approach adopted in this study to converting visual esti-

mates of sediment particle-size to a quantitative particle-size

distribution is straightforward. The procedure is illustrated in

Fig. 1 and described below (eqns 2 and 3). A D-part cumulative

percentage-frequency distribution [X1, Cf1 ... XD, CfD] is calcu-

lated by the following series:

Cf1 ¼ Pl ð2aÞ
Cf2 ¼ Pl þ Ps ð2bÞ
Cf3 ¼ Pl þ Ps þ Pz ð2cÞ
Cf4 ¼ Pl þ Ps þ Pz þ Pg ð2dÞ
where Pl, Ps, Pz and Pg are, respectively, the relative contributions

of clay, silt, sand and gravel. The particle-sizes corresponding to

these cumulative frequency values are given as X1 → X4, respec-

tively, the largest particle-size in clay, silt, sand and gravel fractions,

given here as 2, 630, 2000 and 64,000 μm (see Fig. 1). The precise

values of X are dependent upon the sediment particle-size classi-

fication system used. While [X4 , Cf4] defines the upper limit of

the distribution, it is also pragmatic to constrain the lower
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limit [X0, Cf0], where Cf0 is zero and X0 is a theoretical minimum

particle-size. Given that the smallest particle detected by the

Fritsch Analysette 22 XL is 13.25 w (0.1 μm), X0 is defined here

as 14 w (0.06 μm).
Depending on particular circumstances, the modelling pro-

cess described above may require further adjustments peculiar

to each data set. It is recommended that as much data as are

available should be used to constrain cumulative-frequency dis-

tributions, rather than identifying a set of commonly available

particle-size classes, as in Skaggs et al. (2001) for example.

In addition, estimates of the median particle-size (D50 ) can

be directly inserted into the distribution series (Fig. 1). Median

particle-size estimates for specific size fractions can also be

inserted by assuming that cumulative frequency values are

equidistant from both the upper and lower limits of the size

fraction. For example, the cumulative frequency corresponding

to the median particle-size of the sand fraction, the sand

median (M63), can be defined as:

Cf3 ¼ Cf2 � Cf3
2

þ Cf3 ð3Þ

where Cfzm is the cumulative frequency of the sand median.

In some cases the introduction of additional input points may

result in data conflicts. A common example would be when

the estimated median grain size is not in agreement with

estimates of gravel, sand, silt and clay proportions. Weltje &

Roberson (2012) provide a solution using the Iman & Conover

(1982) rank regression method, which uses a simple ranking

method to reorder non-monotonically increasing data in cumulative

percentage-frequency distributions.

Once a cumulative-frequency distribution has been constructed

using all the available data, intermediate cumulative-frequency

values can be predicted for any given set of particle-sizes using

a suitable model. In this study a range of models are compared

to establish which is most suitable for modelling continuous

particle-size frequency distributions.

Model comparisons

Five different algorithms are used in this study to model

particle-size distributions from sparse data: (i) a four-part

Pearson’s probability distribution function (Johnson et al., 1994),

(ii) a linear interpolation of log-transformed cumulative-frequency

distribution, (iii) a linear interpolation of a logit-transformed

cumulative-frequency distribution after Bagnold & Barndorff-

Nielsen (1980), (iv) a logistic function following Skaggs et al.

(2001) and (v) Weltje & Roberson’s (2012) constrained cubic-spline

(logit-CCS) algorithm. Weltje & Roberson’s (2012) algorithm is

freely distributed as part of a Matlab toolbox, available at

http://particlesizetoolbox.wikipages.com.

To allow unbiased comparisons to be made, each of the models

(with the exception of the Gaussian distribution function)

was run using the four particle-size categories defined by

Skaggs et al. (2001): the relative proportions of clay, silt, very fine

sand and fine sand. It should be noted that while the logistic

model combines the proportions of very fine sand and fine sand

into a single class, the three interpolation functions use these

two classes independently. In contrast, the Pearson distribution

function is run using the first four moments of each particle-size

distribution (mean, standard deviation, skewness and kurtosis)

calculated from measured laser analysis data (Folk & Ward, 1957).

Model performance was assessed by comparing the predicted

distributions with those measured by laser analysis using the

normalised distance (ND) statistic. The normalised distance

between two logratio particle-size distributions a and b is

given as:

NDða;bÞ ¼ 1
D� 1

�
Xi

D

lnbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 . . . bDD

p � lnaiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 . . . aDD

p
� �2

" #
ð4Þ

where D is the number of particle-size categories, a is the

logratio of a modelled distribution and b is the logratio of a

distribution measured by laser analysis. Overall model accuracy

is defined as the median ND score and model precision as the

standard deviation of ND scores.

Results and discussion

Accuracy and precision of operator estimates

The accuracy and precision of operator estimates of sediment

particle-size are presented as summary statistics (Table 1),

box plots (Fig. 2), ternary diagrams (Fig. 3) and an additive

logratio plot (Fig. 4). Table 1 and Fig. 2 both show that on

average the relative proportions of gravel and sand were over-

estimated and correspondingly that the relative proportions

of silt and clay were underestimated. Operator estimates were

Table 1. Median error and error variance of visual descriptions of sediment

texture shown for each operator and for all samples.

Operator 1 Operator 2 Operator 3 All samples

~e s ~e s ~e s ~e s

n 2557 311 360 4885

ÑD 2.03 2.01 2.03 2.02

Gravel 0.60 3.39 0.62 3.52 0.01 3.44 0.34 3.34

Sand 0.93 4.79 0.61 5.13 0.56 4.77 0.88 5.07

Silt –0.18 2.71 –0.22 2.92 0.39 2.49 –0.13 2.90

Clay –1.17 5.03 –0.91 5.16 –0.95 5.19 –1.02 5.08

Error is calculated as the difference between the log-ratio proportions of
gravel, sand, silt and clay measured by laser analysis and estimated by
visual description.
ÑD is the median normalised compositional distance between operator
estimates of the proportions of gravel, sand, silt and clay measured by
laser analysis and estimated by visual description, a measure of overall
operator accuracy.
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least accurate and least precise when estimating the relative

proportions of sand, followed by clay, gravel and silt. The com-

paratively high accuracy and precision of the gravel estimates

may suggest that gravel particles can be identified relatively

easily, although this could also ref lect the low proportion of

samples with gravel in them (<4%). The overall goodness-of-fit

between the operator estimates and laser measurements was calcu-

lated using the ND statistic (eqn 4), giving a median value of 2.02

and a standard deviation of 1.55. The distribution of error is shown

for each operator in Fig. 2 as a series of box plots. A piecewise one--

sample Kolmogorov–Smirnov test indicated that none of the error

populations are normally distributed ( p � 0), so the median error

(~e) rather than the mean is used here as a measure of accuracy. The

precision of operator estimates is given as the standard deviation of

the error (s) (see Table 1).

The relative proportions of sand, silt and clay recorded by

operator estimates and measured by laser analysis are compared

by plotting both data sets on a traditional ternary diagram

(Fig. 3B). The distribution of the operator estimates (black

crosses) ref lects that they are made to the nearest 5 to 1%.

In spite of this limitation, the operator estimates exhibit a very

similar range to the measured laser analysis data. However,

because most of the data measured by laser analysis have rela-

tive proportions of sand >95% the similarity of the two data sets

is difficult to see visually on a ternary diagram. This problem

can be addressed by applying a logratio transform to the data,

allowing the variability around the median (black square) to be

seen with greater clarity (Fig. 4). Fig. 4 shows that there is

a great deal of variability around the median of the laser meas-

urements. In contrast, values recorded by operator estimates

cluster very closely around the median, indicated by a black

circle. Furthermore, the inability of operators to make estimates

more accurate than 1% has a profound impact on modelling spatial

trends in particle-size data because mathematically the relative

difference between 0 and 1 is enormous.

The use of operator estimates has frequently been justified

by the argument that they are more spatially representative of

sedimentary environments than sparse laboratory samples.

Fig. 2. Box-plots showing the distribution of error (ND) in operator esti-

mates for relative proportions of: gravel, sand, silt and clay made by three

different operators. The central mark is the median (accuracy), the edges

of the box are the 25th and 75th percentiles, and the whiskers extend to

the 99% confidence interval of the population. Outliers are plotted indi-

vidually as red crosses. A Wilcoxon rank-sum test demonstrated that there

was no significant difference between the accuracy or precision of operator

estimates for different operators at a 95% confidence level.

Fig. 3A. Ternary plot showing the Dutch sediment classification system for

fine sediments (NEN5104). B. Ternary plot showing the relative propor-

tions of sand, silt and clay measured by laser analysis (red circles) and es-

timated by operators (black crosses). The median compositions of both

groups are indicated by a black square (laser analysis) and a black circle

(operator estimates). Operator estimates replicate the full range of the

measured data, but are limited in terms of their accuracy, i.e. they are

made to the nearest 5–1%.
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However, in this study rather than capturing geological hetero-

geneity operator estimates create a misleading characterisation.

Inaccuracies in operator estimates are likely to result in geolog-

ical inconsistencies and limit the extent to which spatial trends

and hence sedimentary processes can be modelled owing to the

introduction of noise; a high nugget effect in geostatistical terms.

Small variations in particle-size distributions reflect changes in

natural processes over space and time, including sediment deposi-

tion, erosion and mixing. The low resolution of operator estimates

(<5%) restricts the extent to which the spatial trends in subsurface

sediment particle-size can be modelled. This introduction of noise

increases the overall uncertainty involved in geological modelling.

Sediment samples were also classified according to the Dutch

system for natural sediments (NEN5104 (Anonymous, 1989, 1990))

using both operator estimates and laser measurements of the

relative proportions of sand, silt and clay (Fig. 3A). The Dutch clas-

sification system for fine sediment facies consists of 14 categories

focused towards sand-rich facies. Comparing the two sets of results

reveals that classifications made using operator estimates have

an overall success rate of just 14%. The rate of successful clas-

sification is shown for each particle-size category, given as

percentage values above each category (Fig. 5). Fig. 5 shows

that the most precise operator estimates are made for silty sand

particle-size categories, which also coincide with the largest num-

ber of samples. Of these, the category most precisely estimated is

the slightly silty sand (Zs1), with a success rate of 31%. The other

silty sand categories (Zs2, Zs3 and Zs4) have much lower classifi-

cation success rates of 6.3%, 2.3% and 1.3%, respectively.

The number of operator estimates for the silty clay categories

(Ks1, Ks2, Ks3 and Ks4) is much higher than the number measured

by laser analysis. At the same time the classification success rate of

operator estimates for these categories is 0%. This suggests that it

is very difficult to accurately estimate the relative proportions of

clay and silt. These results are at odds with similar studies by Foss

et al. (1975) and Post et al. (1986), who respectively reported 50%

and 46% success rates in operator estimates using the USDA soil

classification system. The comparatively low success rate

possibly reflects the larger number of particle-size categories in

the Dutch standard NEN5104 and its focus towards sand-rich

categories. Operator estimates are typically made to the nearest

5%, hence differentiating between the four closely spaced catego-

ries Zs1, Zs2, Zkx and Zz3 can be problematic (Fig. 3A). Previous

studies into operator estimates have shown that both accuracy

and precision could be improved by training (Post et al., 1986,

2006). This suggests that investing in operator training could be

a cost-effective means of improving the accuracy of geological

models and soil maps.

It is appropriate at this stage to note that the NEN5104 clas-

sification system was developed for samples analysed by both

sieve and pipette analysis (NEN5753 (Anonymous, 1994)). The

uptake of laser granulometry technologies in laboratories has

spawned an extensive literature dealing with conversion to

and from this established standard. Conversion between these

two analytical approaches is a necessary step because of the

fundamental differences in the way that particle-size is mea-

sured. For example, laser granulometry relies on the diffraction

Fig. 4. Bivariate scatterplot showing the logratio of clay to sand against

the logratio of silt to sand for all samples measured by laser analysis

(red circles) and operator estimates (black crosses). The median composi-

tions of both groups are indicated by a black square (laser analysis) and

a black circle (operator estimates). Although operator estimates span

the same range as the measured laser analysis data, they fail to character-

ise the majority of the data variability around the median in the lower left

quadrant of the plot.

Fig. 5. Histogram comparing the classification of samples following the

Dutch scheme for fine sediments (NEN5104) using operator estimates

and laser analysis. The success rate of classifications made using operator

estimates is given for each category as percentage scores. Note that many

of these scores are zero because some samples have been placed in the

wrong size category.
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and refraction of light through particles suspended in a f lowing

medium, while pipetting measures the concentration of sedi-

ment over time within a stationary water column. One of the

impacts of these differences is that the clay fraction has a

tendency to be overestimated by laser granulometry relative

to sieve-pipette measurements. This is most often the result

of platy clay minerals. The approach of most researchers to solv-

ing this issue has been to calculate a series of linear regression

coefficients to convert percentage values measured by one tech-

nique to percentage values measured by the other (Konert &

Vandenberghe, 1997; Beuselinck et al., 1998; Goossens, 2008).

Roberson & Weltje (2014) use quadratic regression in combination

with logratio-transformed data to address differences observed be-

tween sieve-pipette and laser measurements. This successfully

avoids problems of predicting impossible percentage values, while

allowing for a conversion method that incorporates data from adja-

cent size classes. The methods of Roberson & Weltje (2014) are used

here to convert laser measurements to a sieve-pipette standard, us-

ing a replicate data set of 138 Dutch sediment samples (see Rober-

son & Weltje (2014) for further details). The converted laser data are

then classified according to NEN5104 and compared to the clas-

sification made using operator estimates. The classifications

made using the converted laser data indicate that the operator esti-

mates have an accuracy of 16.68%. This negligible improvement

can be explained by the comparative difference between opera-

tor estimates, sieve-pipette measurements and laser measurements.

The median ND between operator estimates and laser measurements

in this study is 2.02, while Roberson & Weltje (2014) calculate the

median ND between sieve-pipette and laser measurements for their

set of duplicate samples as 0.35.

Operator bias

The inf luence of operator bias was assessed using a Wilcoxon

rank-sum test. The test indicated that there was no signifi-

cant difference between the observations of the three dif-

ferent operators for each of the four parameters estimated

(the relative proportions of gravel, sand, silt and clay) at

a 95% confidence level. This statistic is supported by the con-

sistent levels of operator accuracy (median ND, see Table 1),

which are 2.03, 2.01 and 2.03 for operators 1, 2 and 3,

respectively.

The number of samples processed by each operator is sufficiently

large to exclude the possibility of any of them being under-repre-

sented (Table 1). However, the limited number of operators investi-

gated by this study does not provide sufficient evidence to make

generalisations about bias in operator estimates of sediment parti-

cle-size, particularly when all the operators worked in the same lab-

oratory and received similar training. This limitation does not make

the results of this test invalid, however, rather it demonstrates that

operators at the Geological Survey of the Netherlands have all been

trained to a consistent standard.

Model performance

This section compares the performance of five different models

used to calculate complete particle-size distributions from

limited percentage-frequency data. Data measured by laser

analysis are used rather than operator estimates to remove

the influence of operator error on the modelling process. The

five different models compared are (i) a four-part Pearson’s proba-

bility distribution, (ii) a log-linear interpolation, (iii) a logit-linear

interpolation after Bagnold & Barndorff-Nielsen (1980),

(iv) Skaggs et al.’s (2001) logistic probability distribution function

and (v) Weltje & Roberson’s (2012) logit-CCS interpolation

algorithm.

The accuracy and precision of the particle-size distributions

generated by each model are summarised respectively as

the median (~e) and standard deviation (s) of the ND scores

(Table 2). Median ND (accuracy) scores for all samples are very alike,

ranging from 0.345 for the logit-CCS interpolation function to

0.459 for the log-linear model. Precision scores for each model

are also comparable, ranging from 1.365 for the log-linear model

to 1.524 for the four-part Pearson’s model.

Model performance statistics for a range of different distri-

bution types (Gaussian, skewed, peaked and bimodal) are also

given in Table 2. These are illustrated for a series of randomly

selected distributions in Fig. 6. The performance of the dif-

ferent models, on average, is very consistent for Gaussian,

skewed and peaked (leptokurtic) distribution types. The logistic

Table 2. Comparison of different particle-size distribution model performances.

All samples Gaussian Skewed Leptokurtic Bimodal

~e s ~e s ~e s ~e s ~e s

Pearson’s 0.349 1.524 0.348 1.932 0.389 1.500 0.364 1.813 0.677 0.196

Log-linear 0.459 1.365 0.484 1.877 0.424 1.147 0.464 1.583 0.358 0.074

Logit-linear 0.417 1.376 0.362 1.887 0.481 1.149 0.410 1.590 0.776 0.174

Logistic 0.392 1.388 0.298 1.891 0.399 1.178 0.413 1.599 0.554 0.180

Logit-CCS 0.345 1.374 0.335 1.888 0.354 1.153 0.344 1.593 0.323 0.069

Model accuracy and precision are quantified as median and standard deviation of ND scores between modelled distribution and measured distribution.
Model performance is summarised for all samples as well as a range of different distribution types, including normal Gaussian distributions, skewed
distributions, leptokurtic (peaked) distributions and bimodal distributions.
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model in particular is a very accurate method for modelling normal

Gaussian distributions (~e = 0.298).

However, when dealing with bimodal distributions, the per-

formance of Pearson’s, logit-linear and logistic models are

markedly reduced, with median accuracy scores of 0.67, 0.78

and 0.55, respectively. The reduction in performance of the

Pearson’s model is expected, given that the model assumes

unimodality. This means that markedly different distributions

may be characterised by the same distribution moments.

The relatively poor performance of the logit-linear model when

predicting bimodal distributions is more difficult to account

for, given the performance of the very similar logit-CCS model.

The underlying cause lies in the linear extrapolation of the dis-

tribution tails in logit space. This leads to mathematical diffi-

culties because logit values outside the range –7 to 7 (the

equivalent of 0.1–99.9%) are often predicted, creating trun-

cated distributions. The reduced performance of the logistic when

dealing with bimodal distributions is also anticipated because of the

fixed nature of the exponential function coefficients. While the

form of the coefficients allows for skewed, peaked and broad distri-

butions, no provision for bimodality is included (Fig. 6G).

In contrast, both log-linear and logit-CCS models show improved

performance when predicting bimodal distributions (e.g. Fig. 6G).

Median accuracy scores for log-linear and logit-CCS are improved

to 0.36 and 0.32, respectively. The high performance of both of

these models highlights the advantages of interpolation functions

over probability distribution functions, i.e. fewer a priori

assumptions about distribution shape are made. The contrast

in performance between the logit-linear and logit-CCS models

demonstrates the effectiveness of Weltje & Roberson’s (2012)

adaptive non-linear extrapolation algorithm (Weltje & Roberson,

2012, their eqn 11).

Model comparisons demonstrate that the logit-CCS interpo-

lation algorithm is at present the best available method for

modelling particle-size distributions from limited textural data.

In addition to the higher levels of accuracy offered by the logit-CCS

model, an interpolation-based approach offers the clear advantage

that any size-frequency data can be used to build the distribution

model, rather than relying on specific grain size classes. This makes

the method considerably more widely applicable and furthermore

avoids the need to condition empirical constants for specific

particle-size fractions in the manner of Skaggs et al. (2001).

It is worth noting that the interpolation method presented by

Weltje & Roberson (2012) is considerably more complex than

the standard log-linear approach and is currently only available

as a Matlab function. In the absence of sufficient resources to

run the logit-CCS algorithm, operators are advised to use the

log-linear interpolation to model complete particle-size distri-

butions, rather than alternative empirical functions.

Modelling particle-size distributions from
operator estimates

The logit-CCS interpolation algorithm (Weltje & Roberson,

2012) was used to predict complete particle-size distributions

(32 particle-size categories) from operator estimates of sedi-

ment particle-size taken from the data set of Dutch samples.

The robustness of the predicted distributions are assessed by

comparing them each to their respective particle-size distribu-

tions measured by laser analysis (Fig. 7). On average, modelled

distributions are in better agreement with the distributions

measured by laser analysis (median ND = 0.62) than the original

operator estimates (median ND = 2.02). The accuracy of the

Fritsch Analysette particle-sizer has been established previ-

ously by other studies (Jonkers et al., 2009; Weltje & Roberson,

2012). The results of this study indicate that distributions mod-

elled using operator estimates are approximately six times less

accurate than the Fritsch Analysette 22-XL system. Fig. 7 shows

plots of eight randomly selected cumulative frequency distribu-

tions modelled from observer estimates plotted alongside their

respective distributions measured by laser analysis. ND scores

for the modelled distributions are shown for each plot. For samples

A B

C D

E F

G H

Fig. 6. Cumulative-frequency plots comparing distributions modelled from

sparse input data (red circles) against measured distributions (black

dots). The different algorithms used are (i) four-part Pearson’s probability

distribution function (blue dash), (ii) log-linear (green dot), (iii) logistic

(red dot-dash), (iv) logit-linear (cyan dot-dot-dash) and (v) logit-CCS

(magenta solid). Models are shown for a range of distribution types: A,

B, symmetric Gaussian distributions; C, fine skewed; D, coarse skewed;

E, F, leptokutic (peaked); G, H, bimodal.
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where observer estimates are in good agreement with the data,

the modelled particle-size distributions perform well (ND <

0.5). Conversely, if inaccurate input data are supplied, an inaccu-

rate particle-size distribution model is predicted (Fig. 7E). Model

performance is therefore dependent upon the capacity of opera-

tors to accurately estimate a range of particle-size classes. This

limitation means that the application of relatively complex inter-

polation algorithms (e.g. the logit-CCS interpolation) to model-

ling particle-size distributions is unwarranted, as the operator

estimates themselves are orders of magnitude less precise than

the comparative performance of the different interpolation

methods.

Conclusions

1. Comparisons of operator estimates of sediment particle-size

with particle-size distributions measured by laser analysis show

the former to be inaccurate and imprecise. Operator estimates

yield a classification success rate of only 16.68% of samples

using the Dutch classification of fine sediments. The classifica-

tion success rate is probably limited by the large number of

sand-rich classes in the Dutch system (NEN5104). Although

operator estimates encompass the same range of percentage-

frequency values measured by laser analysis, the heterogeneity

of the estimated data does not match that of the measured data

due to the limited accuracy of operator estimates, i.e. mostly the

nearest 1–5%. Although this level of accuracy is excellent for

operator estimates, it does not allow a geological modeller to

capture the full variability of the data, hence many of the sub-

tleties of sedimentary processes may be lost.

2. Operator bias is not a significant influence on estimates of

sediment particle-size for the 4837 Dutch sediment samples

analysed by three different operators. Although this is a relatively

small number of operators compared to similar studies, the results

demonstrate that the laboratory technicians at the Geological

Survey of the Netherlands have been trained to a very similar

standard.

3. Goodness-of-fit statistics (ND) show that for sediment

samples from the Dutch shallow subsurface there is very

little difference in performance between the five models

used to predict complete particle-size distributions from

sparse data: (i) a four-part Pearson’s probability distribu-

tion function (Johnson et al., 1994), (ii) a linear interpola-

tion of log-transformed cumulative-frequency distribution,

(iii) a linear interpolation of a logit-transformed cumulative-

frequency distribution after Bagnold & Barndorff-Nielsen (1980),

(iv) a logistic function following Skaggs et al. (2001) and

(v) Weltje & Roberson’s (2012) constrained cubic-spline

(logit-CCS) algorithm. ND scores also show that the perfor-

mance of each of these models is not markedly affected by

skewed or peaked distributions. However, the performance

of Pearson’s four-part probability distribution function, the

logit-linear interpolation function and Skaggs et al.’s (2001)

logistic function is reduced when dealing with bimodal distri-

butions. In contrast, the performance of both the standard

log-linear interpolation function and Weltje & Roberson’s

(2012) logit-CCS interpolation function is increased when pre-

dicting bimodal particle-size distributions. While, for a broad

range of samples, both the probability distribution functions

of Pearson and Skaggs et al. (2001) perform well, neither

of these methods are able to accurately predict bimodal particle-

size distributions. Of the five models used, the logit-CCS interpo-

lation algorithm is the most consistently accurate model (Weltje &

Roberson, 2012). Interpolation algorithms are considered to be

muchmore practical than empirical distribution functions (Skaggs

et al., 2001) as they are able to incorporate all available input

data, rather than relying on a specific range of grain-size classes.

4. This study demonstrates a straightforward method for modelling

complete particle-size distributions from operator estimates of

sediment particle-size. However, the accuracy and precision

A B

C D

E F

G H

Fig. 7. Cumulative-frequency plots comparing particle-size distributions

modelled from operator estimates (black dashed lines) with those mea-

sured by laser analysis (solid red lines). Note that for the modelled distri-

butions shown operator estimates (black crosses) of the gravel fraction

were zero and are not plotted. Samples were selected to show model perfor-

mance for a range of distribution types: A, B, Gaussian; C, low standard

deviation; D, high standard deviation; E, low skewness; F, high skewness;

G, low kurtosis; H, high kurtosis. ND values indicate goodness-of-fit be-

tween the measured and predicted distributions. Lower scores indicate

a better model fit.
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of the modelled distributions are limited by the shortcomings of

operator estimates. On average, predicted particle-size distribu-

tions are six times less accurate than corresponding laboratory

analyses made by a Fritsch Analysette 22-XL. This large error

margin demonstrates that relatively complex models (e.g. the

logit-CCS interpolation) do not offer tangible improvements

over the standard log-linear interpolation approach when mak-

ing predictions of particle-size distributions from operator

estimates.
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Pawlowlsky-Glahn, V. and Barceló –Vidal, C. (eds). CODAWORK’03.
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