Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field
Abstract
This paper reviews the evolution of a sequence of seismological models developed and implemented as part of a workflow for Probabilistic Seismic Hazard and Risk Assessment of the seismicity induced by gas production from the Groningen gas field. These are semi-empirical statistical geomechanical models derived from observations of production-induced seismicity, reservoir compaction and structure of the field itself. Initial versions of the seismological model were based on a characterisation of the seismicity in terms of its moment budget. Subsequent versions of the model were formulated in terms of seismic event rates, this change being driven in part by the reduction in variability of the model forecasts in this domain. Our approach makes use of the Epidemic Type After Shock model (ETAS) to characterise spatial and temporal clustering of earthquakes and has been extended to also incorporate the concentration of moment release on pre-existing faults and other reservoir topographic structures.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors contributing to Netherlands Journal of Geosciences retain copyright of their work, with first publication rights granted to the Netherlands
Journal of Geosciences Foundation. Read the journal's full Copyright- and Licensing Policy.