Flexible solution concepts for sustainable drinking water production in the Netherlands

  • Guilherme E H. Nogueira Deltares, Unit Subsurface and Groundwater Systems
  • Rianne Meeusen Deltares, Unit Subsurface and Groundwater Systems
  • Renske C. Terwisscha van Scheltinga Vitens NV
  • Tom Hoogland Vitens NV
  • Stefan Jansen Deltares, Unit Subsurface and Groundwater Systems
  • Geert-Jan Nijsten Deltares, Unit Subsurface and Groundwater Systems
  • Janneke Pouwels Deltares, Unit Subsurface and Groundwater Systems
  • Peter H. Kuin Royal HaskoningDHV, The Netherlands
  • Jos H. Peters Royal HaskoningDHV, The Netherlands
  • Hilde F. Passier Deltares, Unit Subsurface and Groundwater Systems
  • Perry G.B. de Louw Deltares, Unit Subsurface and Groundwater Systems
Keywords: sustainable water supply, flexible groundwater extraction, global change, Netherlands, managed aquifer recharge (MAR)

Abstract

The challenges of providing sustainable drinking water are growing due to resource mismanagement, contamination threats and rising demand, which are further intensified by climate change. This further underscores the need for building-in resilience in existing extraction points to gain flexibility against uncertain and unforeseen developments. Although invisible, groundwater is a key drinking water source globally, including in the Netherlands, where over 60% of drinking water comes from it. The Dutch regulations, limited space and competition for water require adaptive strategies that enhance sustainability in water provision. Here, we identified and categorised various groundwater and surface water extraction archetypes in the Netherlands based on land use, extraction depth and local geology, assessing their susceptibility to contamination and operational challenges. Then, we evaluated four solution concepts to enhance sustainability in drinking water supply: the Water Battery (large-scale managed aquifer recharge), Fresh/Salt extraction (mitigated coastal salinisation), Switching between extractions (balancing demands in space) and Resource City (promoting circularity in urban water supply). Practical examples are already in place in the Netherlands as the Epe Water Battery shows successful infiltration and storage of groundwater to meet local demands and avoid undesirable low groundwater levels. We also explore the legal and operational challenges, emphasising stakeholder collaboration, proactive policies and the need for strategic investments in water quality improvement for a resilient, sustainable water supply in the face of climate change.

References

Abboud, J.M., Ryan, M.C. & Osborn, G.D., 2018. Groundwater flooding in a river-connected alluvial aquifer. Journal of Flood Risk Management 11(4): 1–11. DOI: 10.1111/jfr3.12334.




Calverley, C.M. & Walther, S.C., 2022. Drought, water management, and social equity: analyzing Cape Town, South Africa’s water crisis. Frontiers in Water 4:910149, 21. DOI: 10.3389/frwa.2022.910149.




CBS (Centraal Bureau voor de Statistiek), 2020a. Population in the future https://www.cbs.nl/en-gb/visualisations/dashboard-population/population-dynamics/population-in-the-future.




CBS (Centraal Bureau voor de Statistiek), 2020b. Netherlands in numbers. https://longreads.cbs.nl/nederland-in-cijfers-2020/hoe-wordt-de-nederlandse-bodem-gebruikt/.




Damon, B., 2024. Nature-based solutions for living systems: connectivity, complexity, community. Nature-Based Solutions 6: 100136, ISSN 2772-4115. DOI: 10.1016/j.nbsj.2024.100136.




de Louw, P.G.B., 2013. Saline seepage in deltaic areas: Preferential groundwater discharge through boils and interactions between thin rainwater lenses and upward saline seepage. PhD-Thesis – Research external, graduation internal, Vrije Universiteit Amsterdam.




Delsman, J.R., 2015. Saline groundwater - surface water interaction in coastal lowlands. PhD-Thesis – Research external, graduation internal, Vrije Universiteit Amsterdam. IOS Press BV. DOI: 10.3233/978-1-61499-518-0-i.




De Louw, P., Peters, J., Kaandorp, V. & Oost, A., 2020. Verkennend rekenen aan grootschalige infiltratie op de Veluwe. H2O: tijdschrift voor watervoorziening en afvalwaterbehandeling, 53, 38–40. https://www.h2owaternetwerk.nl/images/2020/Mei/Infiltratie_Veluwe_H2O_Online_.pdf.




Dragoni, W. & Sukhija, B.S., 2008. Climate change and groundwater. In Special Publication 288 (Vol. 54, Issue 2). London: The Geological Society. www.geolsoc.org.uk/bookshop.




Dufour, F.C., 2000. Groundwater in The Netherlands—Facts and Figures. Delft/Utrecht, The Netherlands: Netherlands Institute of Applied Geoscience TNO; p. 96.




DutchNews, June 5th, 2023. https://hydrologicalextremes.org/2023/02/01/dutch-drought-2022-a-perspective-by-the-ivm-drought-risk-research-group/.




FAO & AWC, 2023. Guidelines for brackish water use for agricultural production in the Near East and North Africa region. Cairo: FAO; p. 271. DOI: 10.4060/cc3234en.




Fathi, S., Hagen, J.S., Matanó, A. & Nogueira, G.E.H., 2021. Review of GIS multi-criteria decision analysis for managed aquifer recharge in semi-arid regions. In C.B. Pande & K.N. Moharir (Eds.), Groundwater resources development and planning in the semi-arid region Cham: Springer. DOI: 10.1007/978-3-030-68124-1_2.




Geelen, L.H.W.T., Kamps, P.T.W.J. & Olsthoorn, T.N., 2017. From overexploitation to sustainable use, an overview of 160 years of water extraction in the Amsterdam dunes, the Netherlands. Journal of Coastal Conservation 21: 657–668. DOI: 10.1007/s11852-016-0452-x.




Gelati, E., Zajac, Z., Ceglar, A., Bassu, S., Bisselink, B., Adamovic, M., Bernhard, J., Malagó, A., Pastori, M., Bouraoui, F. & De Roo, A., 2020. Assessing groundwater irrigation sustainability in the Euro-Mediterranean region with an integrated agro-hydrologic model. Advances in Science and Research 17: 227–253. DOI: 10.5194/asr-17-227-2020.




Hallegatte, S., 2009. Strategies to adapt to an uncertain climate change. Global Environmental Change 19(2): 240–247, ISSN 0959-3780. DOI: 10.1016/j.gloenvcha.2008.12.003.




Han, M.Y. & Mun, J.S., 2011. Operational data of the Star City rainwater harvesting system and its role as a climate change adaptation and a social influence. Water Science and Technology 63(12): 2796–2801. DOI: 10.2166/wst.2011.597.




Hiscock, K.M., Balashova, N., Cooper, R.J., Bradford, P., Patrick, J. & Hullis, M., 2024. Developing managed aquifer recharge (MAR) to augment irrigation water resources in the sand and gravel (Crag) aquifer of coastal Suffolk, UK. Journal of Environmental Management 351 (December 2023): 119639. DOI: 10.1016/j.jenvman.2023.119639.




Hofman-Caris, R., Bertelkamp, C., de Waal, L., van den Brand, T., Hofman, J., van der Aa, R. & van der Hoek, J.P., 2019. Rainwater harvesting for drinking water production: a sustainable and cost-effective solution in The Netherlands? Water 11: 511. DOI: 10.3390/w11030511.




INOWAS, 2018. Innovative Groundwater Solutions. https://www.inowas.com/mar-methods/aquifer-storage-and-recovery-asr/.




IPCC, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R. & Zhou, B., 2021. IPCC, 2021: climate change 2021: the physical science basis. Contribution of Working Group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge and New York, NY: Cambridge University Press. DOI: 10.1017/9781009157896.




Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, JD. & Ross, A. (eds)., 2016. Integrated groundwater management. Cham: Springer. DOI: 10.1007/978-3-319-23576-9_3.




Kloosterman, R.A., Herder, P.M. & van der Hoek, J.P., 2022. Enhancing the resilience of drinking water infrastructures. International Journal of Critical Infrastructures 18(4): 336–365. DOI: 10.1504/IJCIS.2022.128095.




KNMI, 2023. Koninklijk Nederlands Meteorologisch Instituut. KNMI’23-klimaatscenario’s https://www.knmi.nl/kennis-en-datacentrum/achtergrond/knmi-23-klimaatscenario-s.




Leigh, N.G. & Lee, H., 2019. Sustainable and resilient urban water systems: the role of decentralization and planning. Sustainability 11(3): 918. DOI: 10.3390/su11030918.




Malczewski, J. & Rinner, C., 2015. Multicriteria decision analysis in geographic information science. New York, NY, USA: Springer; 2015.




Maring, L., van den Meiracker, R., Jansen, S., Kloosterman, R., Niesten, M., Passier, H., Postma, M., Terwisscha van Scheltinga, R., de Vries, S. & Welkers, J., 2022. Flexible drinking water extraction design: solution concepts. Deltares report 11205767-000-BGS-003. https://publications.deltares.nl/11205767_000_0003.pdf.




McEvoy, S., van de Ven, F.H.M., Blind, M.W. & Slinger, J.H., 2018. Planning support tools and their effects in participatory urban adaptation workshops. Journal of Environmental Management 207: 319–333. DOI: 10.1016/j.jenvman.2017.10.041.




McEvoy, S., van de Ven, F.H.M., Brolsma, R. & Slinger, J.H., 2020. Evaluating a planning support system’s use and effects in urban adaptation: an exploratory case study from Berlin, Germany. Sustainability (Switzerland), 12(1): 173. DOI: 10.3390/SU12010173.




Oude Essink, G.H., 2001. Salt water intrusion in a three-dimensional groundwater system in the Netherlands: a numerical study. Transport in Porous Media 43: 137–158. DOI: 10.1023/A:1010625913251.




Oude Essink, G.H.P., Van Baaren, E.S. & De Louw, P.G.B., 2010. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resources Research 46(10): 1–16. DOI: 10.1029/2009WR008719.




PBL, 2014. Planbureau voor de Leefomgeving, Waterkwaliteit en -veiligheid. Balans van de Leefomgeving 2014 – Deel 6, Den Haag. https://www.pbl.nl/publicaties/balans-van-de-leefomgeving-2014.




RIVM (Rijksinstituut voor Volksgezondheid en Milieu), 2018. Quality of drinking water https://www.rivm.nl/en/soil-and-water/drinking-water/quality-of-drinking-water.




RIWA-Meuse (Vereniging van Rivierwaterbedrijven-Meuse), 2023. Annual Report 2022. https://www.riwa-maas.org/wp-content/uploads/2023/09/IDF3064-RIWA-MAAS-Jaarrapport-UK-2022-digitaal.pdf.




Scheierling, S.M. & Tréguer, D.O., 2018. Beyond crop per drop: assessing agricultural water productivity and efficiency in a maturing water economy. Washington, DC: World Bank.




Seidl, C., Wheeler, S.A. & Page, C., 2024. Understanding the global success criteria for managed aquifer recharge schemes, Journal of Hydrology 628: 130469, ISSN 0022-1694. DOI: 10.1016/j.jhydrol.2023.130469.




Sheehan, L., 2009. Summary of costs and benefits of water supply alternatives (Report). Sacramento, CA: California Coastkeeper Alliance.




Stefan, C. & Ansems, N., 2018. Web-based global inventory of managed aquifer recharge applications. Sustainable Water Resources Management 4(2): 153–162. DOI: 10.1007/s40899-017-0212-6.




Stein, S., Yechieli, Y., Shalev, E., Kasher, R. & Sivan, O., 2019. The effect of pumping saline groundwater for desalination on the fresh–saline water interface dynamics. Water Research 156: 46–57. DOI: 10.1016/j.watres.2019.03.003.




TNO-GDN, 2024. BRO REGIS II v2.2.2. TNO – Geological Survey of the Netherlands, https://www.dinoloket.nl/en/subsurface-models/map.




Toreti, A., Bavera, D., Acosta Navarro, J., Arias-Muñoz, C., Avanzi, F., Marinho Ferreira Barbosa, P., De Jager, A., Di Ciollo, C., Ferraris, L., Fioravanti, G., Gabellani, S., Grimaldi, S., Hrast Essenfelder, A., Isabellon, M., Jonas, T., Maetens, W., Magni, D., Masante, D., Mazzeschi, M., … Spinoni, J., 2023. Drought in Europe March 2023, EUR 31448 EN. Luxembourg: Publications Office of the European Union. JRC133025. ISBN 978-92-68-01068-6. DOI: 10.2760/998985.




UNESCO, 2023. The United Nations World Water Development Report 2023. In Handbook of water purity and quality. Paris: UNESCO.




van der Gun, J. & Lipponen, A., 2010. Reconciling groundwater storage depletion due to pumping with sustainability. Sustainability 2(11): 3418–3435. DOI: 10.3390/su2113418.




van de Ven, F.H.M., Snep, R.P.H., Koole, S., Brolsma, R., van der Brugge, R., Spijker, J. & Vergroesen, T., 2016. Adaptation Planning Support Toolbox: measurable performance information based tools for co-creation of resilient, ecosystem-based urban plans with urban designers, decision-makers and stakeholders. Environmental Science and Policy 66: 427–436. DOI: 10.1016/j.envsci.2016.06.010.




Wang, H., Mei, C., Liu, J. & Shao, W., 2018. A new strategy for integrated urban water management in China: Sponge city. Science China Technological Sciences 61: 317–329. DOI: 10.1007/s11431-017-9170-5.




Ward, J.D., Simmons, C.T. & Dillon, P.J., 2009. Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery. Journal of Hydrology 370: 83–99. DOI: 10.1016/J.JHYDROL.2009.02.055




Werner, A.D., Bakker, M., Post, V.E.A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T. & Barry, D.A., 2013. Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in Water Resources 51: 3–26. DOI: 10.1016/j.advwatres.2012.03.004.




WFD (Water Framework Directive), 2000. 2000/60/EC: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000.https://www.eea.europa.eu/policy-documents/water-framework-directive-wfd-2000.




Winpenny, J., 1997. Demand management for efficient and equitable use. In M. Kay, T. Franks & L. Smith (Eds.), Water: economics, management and demand (pp. 296–303). London, UK: E & FN Spon.
Published
2025-02-19
How to Cite
Nogueira G. E. H., Meeusen R., Terwisscha van Scheltinga R. C., Hoogland T., Jansen S., Nijsten G.-J., Pouwels J., Kuin P. H., Peters J. H., Passier H. F., & de Louw P. G. (2025). Flexible solution concepts for sustainable drinking water production in the Netherlands. Netherlands Journal of Geosciences, 104. https://doi.org/10.70712/njg.v104.11908
Section
Original Articles